Dynamic Response of Flexible Wind Turbine Blade

نویسندگان

  • Yuqiao Zheng
  • Rongzhen Zhao
  • Hong Liu
چکیده

Aiming at the non-stationary and stall flutter problems of wind turbine blade caused by transient load fluctuations, the dynamic properties of wind turbine were studied, the blade was simplify to a cantilever beam in case of the action of shear deformation and cross section rotating effect were considered in this analysis, equations of the blade were established based on D'Alemberts' principle and the principle of virtual displacement. The dynamic response of the wind turbine was solved by using the finite element method under the transient load environment. A 29.2m rotor blade, previously reported in specialized literature, was chosen as a case study to validate dynamic behaviour predicted by a Timoshenko beam model. It is concluded that despite its simplicity. The cross-sectional sheardeformation has great influence on dynamic response of the blade. Dynamic model is sufficiently accurate to serve as a design tool for the recursive analyses required during design and optimization stages of wind turbines using only readily available computational tools.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of flexible tower-blade and rigid nacelle system: dynamic instability due to their interactions in wind turbine

The dynamic stability of a coupled tower-blade wind turbine system is investigated analytically and experimentally. Coupled equations of motion and associated boundary conditions for the wind tower and a rotating blade are derived by considering the lateral acceleration of the nacelle at the tip of the tower, which is the base of the flexible blade. The coupled eigenvalues are computed for vari...

متن کامل

Performance Prediction of a 5MW Wind Turbine Blade Considering Aeroelastic Effect

In this study, aeroelastic response and performance analyses have been conducted for a 5MW-Class composite wind turbine blade model. Advanced coupled numerical method based on computational fluid dynamics (CFD) and computational flexible multi-body dynamics (CFMBD) has been developed in order to investigate aeroelastic responses and performance characteristics of the rotating composite blade. R...

متن کامل

Torsional Aeroelasticity of a Flexible VAWT Blade using a Combined Aerodynamic Method by Considering Post-stall and Local Reynolds Regime

The present research investigates the torsional aeroelasticity of the blade of an H-type vertical axis wind turbine subject to stall and post-stall conditions in various Reynolds regimes, which is experienced by the blade in a full revolution. In order to simulate the aerodynamics, a new model based on a combination of the Double Multi Streamtubes (DMST) model and the nonlinear multi-criteria C...

متن کامل

Numerical aeroelastic analysis of wind turbine NREL Phase VI Rotor

This study investigated the performance and aeroelastic characteristics of a wind turbine blade based on strongly coupled approach (two-way fluid structure interaction) to simulate the transient FSI1 responses of HAWT2. Aerodynamic response was obtained by 3D CFD-URANS approach and structural response was obtained by 3D Finite element method. Aeroelastic responses of the blade were obtained by ...

متن کامل

Effect of Platform Surge Motion on the Performance of 5MW NREL Offshore Floating Wind Turbine

In this study, an unsteady aerodynamic simulation is performed to realize the influences of platform surge motion on the aerodynamic performance of a high capacity offshore floating wind turbine. A dynamic model with pitch angle control system is utilized to propose a more realistic model of wind turbine and also achieve the rated condition of the rotor. The transient effect of platform surge m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013